Macroscopic Dynamic Modeling of Sequential Batch Cultures of Hybridoma Cells: An Experimental Validation

نویسندگان

  • Laurent Dewasme
  • François Côte
  • Patrice Filee
  • Anne-Lise Hantson
  • Alain Vande Wouwer
چکیده

Hybridoma cells are commonly grown for the production of monoclonal antibodies (MAb). For monitoring and control purposes of the bioreactors, dynamic models of the cultures are required. However these models are difficult to infer from the usually limited amount of available experimental data and do not focus on target protein production optimization. This paper explores an experimental case study where hybridoma cells are grown in a sequential batch reactor. The simplest macroscopic reaction scheme translating the data is first derived using a maximum likelihood principal component analysis. Subsequently, nonlinear least-squares estimation is used to determine the kinetic laws. The resulting dynamic model reproduces quite satisfactorily the experimental data, as evidenced in direct and cross-validation tests. Furthermore, model predictions can also be used to predict optimal medium renewal time and composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and Model Validation of Batch PHB Production Process Using Ralstonia eutropha

Mathematical modeling and simulation of microbial Polyhydroxybutyrate (PHB) production process is beneficial for optimization, design, and control purposes. In this study a batch model developed by Mulchandani et al., [1] was used to simulate the process in MATLAB environment. It was revealed that the kinetic model parameters were estimated off the optimal or at a local optimal point. There...

متن کامل

Metabolic flux-based modeling of mAb production during batch and fed-batch operations.

This paper proposes mathematical models that predict the physiology, growth behavior and productivity of hybridoma cells in both batch and fed-batch systems. Murine hybridoma 130-8F producing anti-F-glycoprotein monoclonal antibody was employed as a model system. A systematic approach based on metabolic flux analysis (MFA) was utilized to yield a dynamic model for predicting the concentration o...

متن کامل

Systematic development of predictive mathematical models for animal cell cultures

Fed-batch cultures are used in producing monoclonal antibodies industrially. Existing protocols are developed empirically. Model-based tools aiming to improve productivity are useful with model reliability and computational demand being important. Herein, a systematic framework for developing predictive models is presented comprising of model development, global sensitivity analysis, optimal ex...

متن کامل

Modeling and Simulation of Polyhydroxybutyrate Production by Protomonas extorquens in Fed-batch Culture

Modeling and simulation of Polyhydroxybutyrate (PHB) production by Protomonas extorquens in fed-batch culture were conducted in this research. The fed-batch model, developed for this process, employed a kinetic model proposed by other researchers. Several kinetic models were investigated to choose the best model. The criterion for this selection was goodness of fit (δ2). Haldane kinetic model w...

متن کامل

Experimental Study and Adsorption Modeling of COD Reduction by Activated Carbon for Wastewater Treatment of Oil Refinery

Application of Granular Activated Carbon (GAC) in adsorption process has been studied for the advanced treatment of municipal and industrial wastewater. Because of entering poisonous compounds such as furfural, phenol and sulfides into the oily wastewater of Tehran refinery, biological aeration basins of wastewater treatment unit may not have the desired performance of COD reductio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017